SAURASHTRA UNIVERSITY

Re-Accredited Grade B by NAAC Grade A

FACULTY OF SCIENCE

SYLLABUS FOR Bachelor of Science

(Statistics)

(Semester- V&VI)

<u>According to Choice Based Credit System</u> <u>Effective from June – 2018</u>

B.Sc. (Statistics) Semester-V <u>Paper: 501(Theory)</u> <u>COMPUTATIONAL TECHNIQUES &R-Language</u>

Objective: The course aims to provide an understanding of application of statistics to business and industries while focusing to develop effective business communication skills among the students.

Key features: To make them aware about Statistical Methods application in the real life.

Course duration: Theory: 60 hours	, 6 hours a week. Credit: 4
Practical: 6 hours a week	Credit: 3

Unit	Торіс	Hours	Marks
No.			
Ι	Finite differences	10	14
	Difference Operators Definition and Relation between them.		
	Gregory Newton's interpolation for equal intervals.		
II	Divided differences & Central differences	10	14
	Newton's divided difference of unequal interval.		
	Lagrange's interpolation and inverse interpolation.		
	Gauss, Sterling and Bessel's formula		
III	Numerical Integration & solution of differential equations	14	14
	General Quadreture formula, Trapezoidal rule, Simpson's one-third rule		
	and 3/8 rule, Weddle's rule		
	Picard's and Taylor'smethod of successive, Euler's Method, Euler-		
	Mecluren's summation formula.		
IV	Solution of algebraic equations	12	14
	Bisection method, Regula-Falsi (False position) method, Successive		
	approximation (Fixed point Iteration) method		
	Newton Raphson's method, Applications of Newton-Raphson formula.		
V	R-Language:	14	14
	Introduction,		
	Data: Descriptive Statistics and Tabulation, Distribution, Simple		
	Hypothesis, Graphical Analysis,		
	Formulation Notation and Complex Statistics		
	Regression (Linear Modeling)		

Paper: 501(Practical) COMPUTATIONAL TECHNIQUES &R-Language

(27 Marks)

- 1. Gregory Newton's Interpolation formula.
- 2. Lagrange's Interpolation formula.
- 3. Newton's divided difference formula.
- 4. Central difference formula of Gauss, Sterling and Bessel.
- 5. Numerical evaluation of integral using Trapezoidal, Simpson 1/3, 3/8 rule, Weddle's rule.
- 6. Solution of Algebraic equation by graphical, false position iteration method.
- 7. Picard's and Taylor's method of successive.
- 8. Euler-Maclaurin's summation formula.
- 9. Newton-Raphson's method and its square root, inverse and inverse square-root formula.
- 10. Practical based on R-language.

Note: Viva-voce and Practical Journals

(8 Marks)

- 1. Gupta P. P. and Malik G. S. (94-96), Numberical Analysis.
- 2. Gupta-Malik (1998), Calculus of Finite differences & Numerical Analysis.
- 3. Hidebrand P. B. (1956): Introduction to Numerical Analysis, Mc Grow Hill
- 4. Kunz: Numerical Analysis
- 5. Raval and Patel: Numerical Analysis (Gujarati)
- 6. Dr. Mark Gardener: Beginning R (The Statistical Programming Language), Wiley India Pvt. Ltd.

B.Sc. (Statistics) Semester-V <u>Paper (ELECTIVE): 501(Theory)</u> APPLIED DECISION MAKING

Objective: The course aims to provide an understanding of application of statistics to business and industries while focusing to develop effective business communication skills among the students.

Key features: To make them aware about Statistical Methods application in the real life.

Unit	Торіс	Hours	Marks
No.		- 10	
Ι	The Decision Problem	12	14
	Introduction		
	Element of decision theory		
	Decision Making Under Uncertainty		
	Laplace (equally likely decision) criterion, Maximin or Minimax criterion		
	Maximax or Minimin criterion, Hurwicz criterion, Regret criterion		
II	Decision Making Under Risk	12	14
	Expected Monetary Value (EMV), Expected Opprtunity Loss (EOL)		
	Expected Value of Perfect Information (EVPI), Bayesian Analysis:		
	Posterior Analysis, Decision Trees		
III	Decision under competition	12	14
	Two person zero sum games, Pure and mixed strategies, Saddle points		
	Dominance principle, Uniqueness of value, Solving 2×2 games,		
	Solving $2 \times n$ games, Competitive and vindictive solutions of non-zero		
	games, Equilibrium points.		
IV	Application of Decision Problem-I	12	14
	The assignment problem economic order quantity model for inventory		
	Inventory problems with random demand		
V	Application of Decision Problem-II	12	14
	Critical path methods for production planning PERT and CPM		
	Project crashing, Risk analysis		

Course duration: Theory:60 hours, 6 hours a week.**Credit:4 Practical:** 6 hours a week**Credit:** 3

Paper(ELECTIVE): 501(Practical) APPLIED DECISION MAKING

(27 Marks)

- 1. Examples based on Decision Making Under Uncertainty
- 2. Examples based on Decision Making Under Risk
- 3. Examples based on Decision Trees
- **4.** Examples based on Decision under competition
- 5. Examples based on Inventory Models
- 6. Examples based on PERT & CPM
- 7. Examples based on Project Crashing
- 8. Example based on Risk Analysis

Note: Viva-voce and Practical Journals

(8 Marks)

- 1. Bajpai Naval, Business Statistics, Indian Institute of Information Technology and Management, Gwalior
- 2. Sharma Anand, Statistics for Management, Indian Institute of Industrial Engineering, Delhi
- 3. Sharma J. K., Quantitative Techniques for Management.

B.Sc. (Statistics) Semester-V <u>Paper: 502(Theory)</u> <u>MATHEMATICAL STATISTICS</u>

Objective: The course aims to provide an understanding of application of statistics to business and industries while focusing to develop effective business communication skills among the students.

Key features:To make them aware about Statistical Methods application in the real life. **Course duration:Theory:**60 hours, 6 hours a week.**Credit:4**

Practical: 6 hours	s a week Credit: 3	3
--------------------	---------------------------	---

Unit	Торіс	Hours	Marks
No.		10	14
Ι	Limit Laws	12	14
	Chebychev's inequality and its examples.		
	Idea of convergence in probability and distribution.		
	Law of large number.		
	Weak law of large number and its examples.		
	De-moivere-laplace theorem and its examples.		
	Definition of characteristic function and its elementary properties,		
	Statement of inversion theorem and its applications.		
	Central limit theorem, Lindberge-Levy's central limit theorem.		
II	Normal Distribution	12	14
	Definition, properties and derivation of p.d.f., moments, median,		
	mode, proof of important properties		
III	Continuous Distribution (Univeriate)	12	14
	Definition, Distribution function, properties and moments of		
	Gamma and Beta		
	Introduction of distributions :Uniform, Exponential, Parato,		
	Weibull, Laplace, Cauchy and truncated binomial and poisson,		
	Log-normal		
IV	Chi-square, t and F Distribution	12	14
	Chi-square Distribution: Definition, derivation of its p.d.f., m.g.f.,		
	c.g.f. its moment and coefficient of skewness. Limitting term,		
	mode, theoretical examples.		
	t- Distribution: Definition, derivation of its p.d.f., its moment and		
	coefficient of skewness, limiting term and mean deviation about		
	mean.		
	F- Distribution: Definition, derivation of its p.d.f., its moment,		
	mode.		
	Relations between t and F distribution and Relations between F and		
	\aleph^2 distributions.		

V	Partial & Multiple Correlation and Regression	12	14
	Partial Correlation and Multiple Correlation for 3 variables, its		
	measures and related results.		
	Test of significance of Partial Correlation Coefficient and Multiple		
	Correlation Coefficients.		
	Bivariate Normal Distribution		
	Definition of Bivariate Normal Distributions, Probability density of		
	BVN distributions, Moment Generating Function, Marginal,		
	Conditional Distributions and its examples.		

Paper: 502(Practical) MATHEMATICAL STATISTICS

(27 Marks)

- 1 Examples based on t distribution
- 2 Examples based on F distribution
- 3 Examples based on \aleph^2 distribution
- 4 Examples based on Normal Distribution
- 5 Examples based on Bia-variate Normal Distribution
- 6 Multiple & Partial Correlation and Regression. Its test Of Significance

Note: Viva-voce and Practical Journals

(8 Marks)

- 1 Goon A. M., Gupta M. K. and Dasgupta B.(1980), Fundamentals of Statistics VOL-II, The World Press Publishers Pvt. Ltd. Calcutta.
- 2 Gupta S. C. and Kapoor V. K.(2012), Fundamentals of Mathematics and Statistics, Eleventh Edition, Sultan Chand & Sons, New Delhi.
- 3 Hogg R. V. and Craig A. T.(1978), Introduction to Mathematical Statistics Forth edition; Collier Macmilan Publishers.
- 4 Kenny J. S. & Keepine E. S.(1954), Mathematical Statistics VOL-I and VOL-II.
- 5 Rao C. R. (1973), Linear statistical Inference and its applications, Second Edition, Wiley Eastern Private Limited, New Delhi.
- 6 Rohatgi V. K. (1986), An Introduction to probability theory & Mathematical Statistics Willey Eastern.

B.Sc. (Statistics) Semester-V <u>Paper: 503(Theory)</u> STATISTICAL INFERENCE

Objective: The course aims to provide an understanding of application of statistics to business and industries while focusing to develop effective business communication skills among the students.

Key features:To make them aware about Statistical Methods application in the real life. **Course duration:Theory:**60 hours, 6 hours a week.**Credit:4**

Practical: 6 hours a weekCredit: 3

Unit	Торіс	Hours	Marks
No.			
Ι	Point Estimation-I	12	14
	Unbiasedness, Consistency, Sufficiency, Factorization		
	Theory(Without Proof), relative efficiency, illustrations of point		
	estimation.		
II	Point Estimation-II	12	14
	Definition of MVUE		
	Cramer Rao Inequality, CR lower bound and its applications,		
	Amount of information		
	Rao-Black well theorem		
	Concept of complete sufficient Statistic with illustration.		
III	Method of Estimation	12	14
	Method of moments and its illustration		
	Method of maximum likelihood and its illustration		
	Properties of MLE (only statements) and example		
	Method of minimum Chi-square.		
	Linear models & Linear Estimation		
	Linear model		
	Assumption, Estimability and BLUE		
	Method of least square		
	Gauss-markov theorem		
	Estimation of error variance		
IV	Testing of Hypothesis-I	12	14
	Statistical Hypothesis simple and composite hypothesis		
	Types of Error, Statistical tests, Critical region		
	Power function and Power of a test with illustration		
	Definition of MP		
	N.P. Lemma its application in testing of hypothesis regarding		
	Binomial, Poisson, Normal and Exponential distribution		

V	Testing of Hypothesis-II	12	14
	Definition of UMP test and its comparison with MP test		
	Likelihood Ratio test and its examples for Binomial, Poisson and		
	Normal distribution		
	Need for sequential tests		
	Wald's SPRT with illustrations		
	OC and ASN function for Binomial, Poisson and Normal		
	distributions.		

Paper: 503(Practical) STATISTICAL INFERENCE

(27 Marks)

- 1. Method of estimation
- 2. Method of moments
- 3. Maximum likelihood estimator
- 4. MLE of truncated Binomial and Poisson distribution
- 5. Two types of error
- 6. Power of test
- 7. Drawing power curve of test
- 8. SPRT for Binomial, Poisson and Normal distribution
- 9. Drawing of OC and ASN

Note: Viva-voce and Practical Journals

(8 Marks)

- 1. Dharmadhikari and Patel: Statistical Inference, Gujarat Board.
- 2. Gupta S. C. and Kapoor V. K.(2012), Fundamentals of Mathematics and Statistics, Eleventh Edition, Sultan Chand & Sons, New Delhi.

- 3. Hogg R. V. and Craig A. T.(1978), Introduction to Mathematical Statistics, Fourth Edition, Collier Mc Milan Publishers.
- 4. Mood A. M. Graybill F. A. and Bosse D. C. (1974), Introduction to the Theory of Statistics, Third Edition, Mc Grow Hill.
- 5. Rao C. R. (1973), Linear statistical Inference and its applications ,Second Edition, Wiley Eastern Private Limited, New Delhi.
- 6. Rohatgi V. K.(1986), An Introduction to probability theory and Mathematical Statistics, Wiley Eastern.
- 7. Silvey S. D.(1970), Statistical Inference, Penguin Books.

B.Sc. (Statistics) Semester-VI <u>Paper: 601(Theory)</u> DESIGN OF EXPERIMENTS AND SAMPLING TECHNIQUES

Objective: The course aims to provide an understanding of application of statistics to business and industries while focusing to develop effective business communication skills among the students.

Key features:To make them aware about Statistical Methods application in the real life. **Course duration:Theory:**60 hours, 6 hours a week.**Credit:4**

Practical: 6 hours a week**Credit:** 3

Unit No.	Торіс	Hours	Marks
I	Basic concepts of Design of Experiment	12	14
	Need for Design of Experiments		
	Fundamental principles of Design of Experiment		
	Analysis of variance		
	Model and assumptions		
	Derivation of analysis of variance for one-way classification (with fixed		
	effect models).		
	Derivation of analysis of variance for two-way classification (with fixed		
	effect models).		
II	Basic Design	12	14
	C.R.D., R.B.D., L.S.D. with their analysis		
	Missing plot technique (Up to two missing values) for R.B.D. and L.S.D.		
III	Efficiency	12	14
	Efficiency of designs		
	Efficiency of R.B.D. over C.R.D.		
	Efficiency of L.S.D. over C.R.D. and R. B.D.		
	Factorial Designs		
	Concept of Factorial designs and its comparison with basic design.		
	2^2 , 2^3 , 3^2 factorial design and their analysis of variance table.		
	Concept of Confounding Experiments with example.		
	Concept of total and partial confounding with illustrations		
IV	Concept of Sampling	12	14
	Concept of population and sample		
	Need for sampling, census and sample survey		
	Basic concepts in sampling, sample selection, sample size, sampling		
	frame, sampling error and non-sampling error.		
	Simple random sampling		
	Simple random sampling with and without replacement.		
	Estimation of population mean, population and variance.		
	Example.		

V	Stratified random sampling	12	14
	Estimation of population mean and its variance.		
	Different types of allocation: Neyman, Proportional and Optimum, their		
	comparison with simple random sampling, Example.		
	Systematic sampling		
	Estimation of population mean and its variance.		
	Comparison with simple random and stratified samplings, elements of		
	non sampling errors, Example.		

Paper: 601(Practical)

DESIGN OF EXPERIMENTS AND SAMPLING TECHNIQUES

(27 Marks)

- 1. ANOVA for one-way and two-way classification(with fixed effect models)
- 2. Analysis of C.R.D., R.B.D. and L.S.D.
- 3. Efficiency of R.B.D. over C.R.D., Efficiency of L.S.D. over C.R.D. and L.S.D. over R.B.D.
- 4. Missing plot techniques(Up to Two) for R.B.D. and L.S.D.
- 5. 2^2 , 2^3 , 3^2 Factorial experiments
- 6. Concept of total confounding
- 7. Only selection of sample and determination of sample size
- 8. Simple random sampling, Stratified random sampling and Systematic random sampling
- 9. Gain due to stratification from the simple random sampling

Note: Viva-voce and Practical Journals

(8 Marks)

- 1. ChaudhuriArijit and Strenger H. (2005), Theory and Methods of Survey Sampling, Chapman & Hall/CRC, Taylor & Francis Group, New Yourk.
- 2. Cochran W. G. and Cox G. M. (1957) Experimental design, John Wiley.
- 3. Cochran W. G. (2007), Sampling Technique, Third Edition, Wiley-India, New Delhi.
- 4. Das, M.N. and Giri, N. (1975). Design and analysis of experiments. New age international publication.
- 5. Ghosh D. K. (2013), Factorial Designs, Saurashtra University, Rajkot.
- 6. Goon A. M., Gupta M. K. and Dasgupta B. (1986), Fundamental of Statistics, VOL-2, World Press, Calcutta.
- 7. Gupta S. C. and Kapoor V. K.(2011), Fundamentals of Applied Statistics, Fourth Edition, Sultan chand& Sons, New Delhi.
- 8. Murthy, M. N. (1977). Sampling theory and methods. Statistical publishing society. Kolkatta.
- 9. MukhopadhyayParimal(2008), Theory and Methods of Survey Sampling, Second Edition, Prentice Hall India.
- 10. Shah S. M., Experimental design and sampling techniques(Gujarat Board)
- 11. Sukhatme et al. (1984), Sampling Survey methods and its applications, Indian Society of Agricultural Statistics.
- 12. W. G. Cochran (1984), Sampling techniques, third edition, Wiley Eastern.

B.Sc. (Statistics) Semester-VI <u>Paper: 602(Theory)</u>

STATICAL QUALITY CONTROL & OPERATION RESEARCH

Objective: The course aims to provide an understanding of application of statistics to business and industries while focusing to develop effective business communication skills among the students.

Key features:To make them aware about Statistical Methods application in the real life. **Course duration:Theory:**60 hours, 6 hours a week.**Credit:4**

		•	
Practical:	6 hours a	weekCredit: 3	

Unit	Торіс	Hours	Marks
No. I	STATISTICAL OUALITY CONTROL L	12	14
1	STATISTICAL QUALITY CONTROL-I	12	14
	(INTRODUCTION AND THEORY OF CONTROL CHARTS) Introduction		
	Quality and Quality Control, Variations in Quality, Theory of Control		
	Charts. Theory of Runs. Specification Limits, Process Limits and		
	Revised Limits, Use of Statistical Quality Control.		
	Charts for Variables: \overline{X} chart, R chart, σ – chart		
	Charts for Attributes: np-chart, p-chart, c-chart		
II	STATISTICAL QUALITY CONTROL-II	12	14
		12	17
	(ACCEPTANCE SAMPLING PLANS):		
	Principles of acceptance sampling problem of lot acceptance		
	Simulation of good and bad lots		
	Producer's risks and consumer's risks, AQL and LTPD Single Acceptance Sampling Plan and Double Acceptance Sampling		
	plans and their functions like OC, ASN, AOQ and ATI.		
III	LINEAR PROGRAMMING PROBLEM-I	12	14
111	Elementary theory of convex sets, Definition of general linear	12	14
	programming problems, Problems occurring in various fields, Graphical		
	method of solving LPP.		
IV	LINEAR PROGRAMMING PROBLEM-II	12	14
1,	Method of solving LPP: Simplex, Two Phase and Big-M	12	17
	Duality of LPP and its examples.		
V	Transportation problem	12	14
v		14	17
	(non-degenerate and balances case only)		
	Definition and Concept.		
	Method of initial feasible solution: N-W corner, Minimum Row,		
	Minimum Column, Least cost, Vogel's		
	Assignment problem		
	Definition and Concept, Method of solution: Hungarian		

Paper: 602(Practical) STATICAL QUALITY CONTROL & OPERATION RESEARCH (27 Marks)

1. Control Charts: \overline{X} chart, R chart, σ – chart, np-chart, p-chart, c-chart

- 2. Single acceptance sampling plan and Double acceptance sampling plan.
- 3. Graphical method of solving LPP
- 4. Method of solving LPP: Simplex, Two Phase and Big-M
- 5. Transportation problem: Method of initial feasible solution by N-W corner, Minimum Row, Minimum Column, Least cost and Vogel's.
- 6. Assignment problem:Method of solution by Hungarian.

Note: Viva-voce and Practical Journals

(8 Marks)

- 1. Cowden D. J. (1960), Statistical method in Quality Control, Prentice Hall.
- 2. Ducan A. J.(1974), Quality Control and Industrial Statistics, Fourth Edition, Taraoprewal and Sons.
- 3. E. L. Grant (1964), Statistical Quality Control, Third edition, Mc Grow Hill.
- 4. Gupta S. C. and Kapoor V. K.(2011), Fundamentals of Applied Statistics, Fourth Edition, Sultan chand& Sons, New Delhi.
- 5. Sharma J. K.(2009), Operations Research Theory and Application, Fourth Edition, MACMILLAN PUBLICHSERS INDIA LIMITED, New Delhi.
- 6. TahaHamdy A.(2008), Operations Research: An Introduction, Eight Edition, Pearson Prentice Hall, New Delhi.

B.Sc. (Statistics) Semester-VI <u>Paper: 603(Theory)</u> <u>PROGRAMMING WITH C++,VITAL STATISTICS</u> <u>& NON-PARAMETRIC METHODS</u>

Objective: The course aims to provide an understanding of application of statistics to business and industries while focusing to develop effective business communication skills among the students.

Key features: To make them aware about Statistical Methods application in the real life.

Course duration: Theory: 60 hours, 6 hours a week. Credit:4

Practical: 6 hours a week**Credit:** 3

Unit No.	Торіс		Marks
INU.	Introduction	12	14
	History & Features of C Language, Components of C Language		
	Structure of C Program, C Editor Command		
	Variable, Identifier, Constants, Operators and		
	expressions		
	Variable declaration, Local, Global, Parametric variables, Assignment		
	of variables.Basic Data Types, Enumerated data types, Derived data		
	types.Constants.Arithmetic, Relation and logical operators, Assignment		
	operators, Increment and Decrement operators, Conditional operators,		
II	Bitwise operators.	12	14
11	Control Statement	12	14
	Control statements, Conditional statements, Ifelse Statement and Nesting of ifelse.Switch statement, Break Statement.For loop		
	statement. While loop statement. Do while loop statement.		
	Functions and Arrays Statement		
	Standard header file, Library function, String functions, Mathematical		
	functions, One dimensional Array, Two dimensional Array, Multi		
	dimensional Array		
III	Introduction: Uses of Vital Statistics. Methods of Obtaining Vital	12	14
	Statistics.		
	Measurement of Mortality: Crude Death Rate (C.D.R.), Specify		
	Death Rate (S.D.R.), Standardized Death Rates.		
	Mortality Table or Life Table		
	Stationary Population, Stable Population, Central Mortality Rate, Force		
	of Mortality, Assumptions, Description and Construction of Life Table.		
	Uses of Life tables.		
IV	Fertility	12	14
	General Fertility Rate (G.F.R.), Specific Fertility Rate (S.F.R.), Total		
	Fertility Rate (T.F.R.).		

	Measurement of Population Growth		
	Crude Rate of Natural Increase and Pearle's Vital Index, Gross Reproduct		
	Rate, Net Reproduction Rate		
V	NON-PRAMETRIC METHODS		14
	Introduction, Advantages and drawbacks of Non-Parametric Methods		
	over Parametric Methods. Wald-Wolfowitz Run test, Median test, Sign		
	Test, Mann-Whitney-Wilcoxon U-test.		

Paper: 603(Practical) PROGRAMMING WITH C++,VITAL STATISTICS & NON-PARAMETRIC METHODS

(27 Marks)

- 1. Mathematical Series Print Problems.
- 2. Finding *nPr* and *nCr*.
- 3. Finding Maximum and Minimum value of a given set of Observations.
- 4. Mean, Variance for ungrouped data.
- 5. Mean, Variance for grouped data.
- 6. Simple and compound interest.
- 7. Arrange ascending/descending number and alphabet.
- 8. Matrix addition, subtraction and multiplication of matrix.
- 9. Fining correlation coefficient of ungrouped data
- 10. Finding the Binomial and Poisson probability.
- 11. Vital Statistics
- 12. Non Parametric methods

Note: Viva-voce and Practical Journals (8 Marks)

- 1. Balaguruswamy E: Programming in ANSI C, Tata McGraw Hill.
- 2. Gottfried Byrons: Theory and problems of programming with C , TMH.
- 3. Gupta S. C. and Kapoor V. K.(2012), Fundamentals of Mathematical Statistics, Eleventh Edition, Sultan Chand & Sons, New Delhi.
- 4. Gupta S. C. and Kapoor V. K.(2012), Fundamentals of Applied Statistics, Eleventh Edition, Sultan Chand & Sons, New Delhi.
- 5. Kanitkar Y.P. Working with C, BPB publication.
- 6. Kernighan Brian W. and Ritchie Dennis M. (1991), The C programming Language, Second Edition, Prentice-Hall of India Prv. Ltd., New Delhi.
- 7. Schildt Herbert C: Made Easy, Mac Graw Hill.
- 8. Schildt Herbert C: The Complete reference IIIEd .TMM

B.Sc. (Statistics) Semester-VI <u>Paper (ELECTIVE): 603(Theory)</u> APPLIED STATISTICS

Objective: The course aims to provide an understanding of application of statistics to business and industries while focusing to develop effective business communication skills among the students.

Key features: To make them aware about Statistical Methods application in the real life.

Pract	ical: 6 hours a weekCredit: 3		
Unit	Торіс	Hours	Marks
No.		12	14
Ι	INVENTORY CONTROL		14
	Costs associated with inventory-classification of inventory systems		
	Lot-size models with and without shortage(back order policy only)		
	Inventory models under price breaks and quantity discount		
	Deterministic inventory models under given rest icons-ABC and VED		
	analysis. Elasticity of demand and supply with short exercise.		
Π	QUEUING THEORY AND SEQUENCING PROBLEMS		14
	Basic concepts for a quieueins system		
	Study of M/M/1:(00/FIFO) and M/M/m:(00/FIFO) queues with simple		
	properties.		
	Apply of queuing theory without any mathematical derivations.		
	Problem of sequencing-sequencing of n jobs on two and three machines.		
III	SIMULATION	12	14
	Introduction, Simulation defined, Types of Simulation, Steps of		
	simulation process.		
	Stochastic Simulation and Random number: Monte Carlo Simulation,		
	Random Number Generation.		
	Simulation Problems: Inventory, Queuing and Investment.		
IV	INFORMATION THEORY	12	14
	Introduction, Communication Process, A measure of Information,		
	Measure of Other Information Quantities, Channel Capacity, Efficiency		
	and Redundancy, Encoding, Shannon-Fano Encoding Procedure,		
	Necessary and Sufficient Condition for Noiseles Encoding.		
V	DYNAMIC PROGRAMMING		14
	Introduction, Dynamic Programming Terminology, Developing Optimal		
	Decision Policy, Dynamic Programming under Certainty, Dynamic		
	Programming Approach for Solving Linear Programming Problem.		

Course duration:Theory:60 hours, 6 hours a week.**Credit:4 Practical:** 6 hours a week**Credit: 3**

Paper (ELECTIVE): 603(Practical) <u>APPLIED STATISTICS</u>

(27 Marks)

- 1. Examples based on Inventory
- 2. Examples based on Queuing theory and Sequencing Problems
- 3. Examples based on Simulation
- 4. Examples based on Information Theory
- 5. Examples based on Dynamic Programing

Note: Viva-voce and Practical Journals

(8 Marks)

- 1. Sharma J. K.(2009), Operations Research Theory and Application, Fourth Edition, MACMILLAN PUBLICHSERS INDIA LIMITED, New Delhi.
- 2. TahaHamdy A.(2008), Operations Research: An Introduction, Eight Edition, Pearson Prentice Hall, New Delhi.

THEORY				
	100 MARKS			
Marks for External Examination:	(Short Questions) $\rightarrow 20$ Marks			
	(Descriptive type) \rightarrow 50 Marks			
	Total Marks →70 Marks			
Marks for Internal Examination:	Assignmentsand Test→30 Marks			
Format of External Question Paper				
• There shall be paper of 70 marks and timing 2 hours and 30 minutes				
• There shall be FIVE questions from each unit of 14 marks each.				
• Each Question will be of the following form.				
Question(A) Answer any four out of four4 Marks				
(Short answer type question)				
(B) Answer any one out of two 2 Marks				
(C) Answer an	y one out of two 3 Marks			
(D) Answer an	y one out of two 5 Marks			
TOTAL	14 Marks			

PRACTICAL MARKS: 50		
Marks for External Examination: TIME: 3 HOURS	(Examples) $\rightarrow 27$ Marks (Via-voce $\rightarrow 08$ Marks and Practical Journals) Total Marks $\rightarrow 35$ Marks	
Marks for Internal Examination:	15 Marks	

-: Project Work:-

• There will be a project on any topic in Statistics preferably not covered in the syllabus.

• There will be one lecture per week to guide and motivate for each group of Students (5th and 6th semester).

• There will be credit of Project work is 3 at 5^{th} and 6^{th} semester each.

• During the fifth semester:

1. Introduced and assigned title of the project,

2. Teams will be formed for the same.

3. Each group will study, search reference, collect data and work-out details for their topic of project-work.

• During the sixth semester:

1. Students will finalize, document, submit and get the project work certified in their names.

2. The project work must be submitted by the student in the fourteenth week of the sixth semester.

3. Only on the submission of project dissertation the student will be issued hall ticket for the end semester theory and practical examination.

4. The dissertation may be typed at least 50 pages of A4 size.

5. Project work shall be evaluated by an external and one internal examiner which will be followed by presentation of the work and viva-voce.

6. Students will be required to undergo verification, evaluation and viva of the project-work they have done.

7. Certified documentation of the project-work done by each group is mandatory. The certified documentation should be produced while appearing for viva and evaluation of project during final examination of sixth semester.

• The project work will be evaluated for 100 marks of which **80% marks** will be allotted for the **dissertation** and **20% for the presentation** and **viva-voce**

• The Evaluation of the project work will be done at the end of the sixth semester. For the Evaluation of the project work there shall be three hours duration at the end of the sixth semester.