SAURASHTRA UNIVERSITY

COURSE STRUCTURE
&
SYLLABUS
FOR
UNDERGRADUATE PROGRAMME
IN
BIOCHEMISTRY 3rd and 4th Semester
CORE COURSES
UNDER
CHOICE BASED CREDIT SEMESTER SYSTEM
w.e.f June, 2017.
COURSE STRUCTURE FOR UG PROGRAMME
BIOCHEMISTRY - 301
SEMESTER 3

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Title</th>
<th>Hours/week</th>
<th>Credit</th>
<th>Exam hours</th>
<th>Internal marks</th>
<th>External Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>3rd</td>
<td>301</td>
<td>Biomolecules</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>30</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>3rd</td>
<td>301</td>
<td>Practicals</td>
<td>6</td>
<td>3</td>
<td>15</td>
<td>35</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

Saurashtra University
Semester 3rd Syllabus of Biochemistry (CBCS)
Biochemistry – 301

BIOMOLECULES

Credit : 4
Theory : 6 lectures/week
Total Lectures: 60

UNIT 1: Carbohydrates.
[12 hours]
Structure, occurrence and biological importance of monosaccharides, disaccharides, oligosaccharides and polysaccharides e.g. cellulose, chitin, agar, pectin, proteoglycans, sialic acids, blood group polysaccharides, glycogen and starch. Bacterial cell wall polysaccharides. Glycoproteins.
Stereoisomerisms and optical isomerism of sugars. Ring structure and anomeric forms, mutarotation. Reactions of sugar due to aldehyde or ketone groups and hydroxyl groups.

UNIT 2: Lipids.
[12 hours]
Introduction, classification, nomenclature, structure and properties of different classes of lipids.
saturated and unsaturated fatty acids. Essential fatty acids.
Triacylglycerols: nomenclature, physical properties, chemical properties and characterization of fats- hydrolysis, saponification value, rancidity of fats Reichert- Meissel number and reaction of glycerol. Biological significance of fats.

UNIT 3: Proteins.
[12 hours]
Amino acids: Common structural features, stereo-isomerism and RS system of designating optical isomers, classification and structures of standard amino acids, physical and chemical properties, titration of amino acids, non-standard amino acids.
Peptides: Structure of peptide bond. Determination of the amino acid sequence of polypeptide chain.

Introduction, classification based on solubility, shape, composition and functions.

Structure and biological functions of fibrous proteins (keratins, collagen and elastin), globular proteins (hemoglobin, myoglobin), lipoproteins, metalloproteins, glycoproteins and nucleoproteins.

UNIT 4: Nucleic acids: [12 hours]
Nature of genetic material; evidence that DNA is the genetic material, composition of RNA and DNA, generalized structural plan of nucleic acids, nomenclature used in writing structure of nucleic acids, feature of DNA double helix.

Denaturation and annealing of DNA, structure and roles of different types of RNA. Size of DNA in prokaryotic and eukaryotic cells. Central dogma of molecular biology, Gene, genome & chromosome.

UNIT 5: Porphyrins and Vitamins: [12 hours]
Porphyrins: Porphyrin nucleus and classification of porphyrins. Important metalloporphyrins occurring in nature. Detection of porphyrins spectrophotometrically and by fluorescence.

Bile pigments- chemical nature and their physiological significance.

Vitamins: Introduction, classification, biological significance and deficiency symptoms of different vitamins.

Biochemistry Practicals: 301
Credit: 3
6 Hours / Week (2 Days)

1) Qualitative analysis of carbohydrates.
2) Qualitative analysis of amino acids and proteins.
3) Qualitative analysis of different classes of lipids.
4) Introduction to colorimeter and spectrophotometer and their use in quantitative analysis.
5) Estimation of reducing sugars by DNSA method.
6) Quantitative estimation of amino acids by Ninhydrin method.
7) Estimation of proteins by Biuret method.
8) Estimation of RNA by orcinol method.

Reference Books:
2) Biophysical biochemistry by Upadhyay and Nath.
3) Tools of biochemistry by cooper.
6) Fundamentals of Biochemistry by Donald Voet, Judith Voet and Charlotte Pratt. John Willey and Sons.
8) Standard methods of biochemical analysis by S.R.Thimmaiah, Kalyani publishers Delhi, India.
10) Lippincott’s illustrated Reviews- Biochemistry by Champe, Harvey, Ferrier.
11) Biochemistry by U. Satyanarayana
12) Biochemistry and Molecular Biology by William Elliott and Daphne Elliott.

COURSE STRUCTURE FOR UG PROGRAMME
BIOCHEMISTRY- 401
SEMESTER 4

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Title</th>
<th>Hours/week</th>
<th>Credit</th>
<th>Exam hours</th>
<th>Internal marks</th>
<th>External Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>4th</td>
<td>401</td>
<td>Biophysical And Biochemical Techniques</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>30</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>4th</td>
<td></td>
<td>Practicals</td>
<td>6</td>
<td>3</td>
<td>15</td>
<td>35</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

Saurashtra University
Semester 4th Syllabus of Biochemistry (CBCS)

PAPER NO 401
BIOCHEMISTRY – CBCS
BIOPHYSICAL AND BIOCHEMICAL TECHNIQUES
Credit: 4

Theory: 6 lectures/ week
Total Lectures: 60

Unit I Spectroscopic techniques:
[12 hours]
2. Instrumentation, principles, components and working of single and double beam colorimeter and spectrophotometer.

UNIT 2 Hydrodynamic techniques: [12 hours]

1. Sedimentation- the concepts of Centrifugal force (F) and Relative centrifugal force (RCF).
2. Preparative and analytical centrifugation- instrumentation, techniques, and their applications.

UNIT 3 Radio isotopic techniques: [12 hours]

1. Types of radioisotopes used in biochemistry, units of radioactivity.
2. Techniques for measurement of radioactivity (gas ionization and liquid scintillation counting).

UNIT 4: Chromatography: [12 hours]

General principles, methods and applications of the following techniques:

1. Paper and thin-layer chromatography techniques.
2. Ion exchange chromatography.
3. Molecular sieve chromatography.
4. Affinity chromatography
5. Gas-Liquid chromatography (GLC)
6. High performance liquid chromatography (HPLC)

UNIT 5: Electrophoresis. [12 hours]

1. Basic principles of electrophoresis and factors affecting electrophoretic mobility.
2. Principle, materials used and applications of Agarose and Polyacrylamide gel electrophoresis (PAGE).
3. Techniques of Isoelectric focusing, SDS-PAGE, 2-D Gel electrophoresis and their importance

Practicals 401:

1) Introduction to principle and working of Colorimeter and spectrophotometer.
2) Determination of absorption spectrum and absorption maxima of given compound.
4) Introduction to principle and working of centrifuge.
5) Separation of amino acids using paper chromatography. Determination of Rf values and identification of amino acids from mixtures.
6) Separation of lipids by thin layer chromatography.
7) Separation of compounds using column chromatography.
8) Agarose Gel electrophoresis of DNA.

References:

1) Physical biochemistry by D.Frifelder, W.H.Freeman and Co.
2) Physical biochemistry by Vanholde K.E., Practice Hall Inc. New Jersey.
4) Biophysical biochemistry by Upadhyay and Nath.
5) Tools of biochemistry by cooper.